
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.

2 - 13 Verification of Solutions
Verify (by substitution) that the given function is a solution of the PDE. Sketch or graph 
the solution as a surface in space.
2 - 5 Wave Equation (1) with suitable c

3. u = cos 4t sin 2x

Clear["Global`*⋆"]

u[x_, t_] = Cos[4 t] Sin[2 x]

Cos[4 t] Sin[2 x]

d1 = D[u[x, t], {t, 2}]

-−16 Cos[4 t] Sin[2 x]

d2 = D[u[x, t], {x, 2}]

-−4 Cos[4 t] Sin[2 x]

d1 ⩵ c2 d2 (*⋆ 1D wave equation *⋆)

-−16 Cos[4 t] Sin[2 x] ⩵ -−4 c2 Cos[4 t] Sin[2 x]

Solve-−16 Cos[4 t] Sin[2 x] ⩵ -−4 c2 Cos[4 t] Sin[2 x], {c}

{{c → -−2}, {c → 2}}

Plot3D[Cos[4 t] Sin[2 x], {x, 0, Pi}, {t, 0, Pi}]

The value of the constant, c, is the key to the description of the particular solution u.

5. u=sin at sin bx

Clear["Global`*⋆"]



u[x_, t_] = Sin[a t] Sin[b x]

Sin[a t] Sin[b x]

d1 = D[u[x, t], {t, 2}]

-−a2 Sin[a t] Sin[b x]

d2 = D[u[x, t], {x, 2}]

-−b2 Sin[a t] Sin[b x]

d1 ⩵ c2 d2 (*⋆ 1D wave equation *⋆)

-−a2 Sin[a t] Sin[b x] ⩵ -−b2 c2 Sin[a t] Sin[b x]

Solve-−a2 Sin[a t] Sin[b x] ⩵ -−b2 c2 Sin[a t] Sin[b x], {c}

c → -−
a

b
, c →

a

b


subeq = u[x, t] /∕. {a → 2, b → 3}

Sin[2 t] Sin[3 x]

Plot3D[subeq, {x, 0, Pi}, {t, 0, Pi}]

6 - 9 Heat Equation (2) with suitable c

7. u=ⅇ-−ω2 c2 t sin x

Clear["Global`*⋆"]

u[x_, t_] = ⅇ-−ω2 c2 t Sin[ x]

ⅇ-−c2 t ω2 Sin[x]

d1 = D[u[x, t], {t}]

-−c2 ⅇ-−c2 t ω2 ω2 Sin[x]

d2 = D[u[x, t], {x, 2}]

-−ⅇ-−c2 t ω2 Sin[x]
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d1 == c2 d2 (*⋆ 1D heat equation *⋆)

-−c2 ⅇ-−c2 t ω2 ω2 Sin[x] ⩵ -−c2 ⅇ-−c2 t ω2 Sin[x]

I can’t get Solve to give me what I want here. By inspection, c can take on any value, with ω 
=1 or -1.
subeq = u[x, t] /∕. {c → 2, ω → 1}

ⅇ-−4 t Sin[x]

Plot3D[subeq, {x, 0, Pi}, {t, 0, Pi}]

9. u=ⅇ-−π2 t cos 25 x

Clear["Global`*⋆"]

u[x_, t_] = ⅇ-−π2 t Cos[25 x]

ⅇ-−π2 t Cos[25 x]

d1 = D[u[x, t], {t}]

-−ⅇ-−π2 t π2 Cos[25 x]

d2 = D[u[x, t], {x, 2}]

-−625 ⅇ-−π2 t Cos[25 x]

d1 == c2 d2 (*⋆ 1D heat equation *⋆)

-−ⅇ-−π2 t π2 Cos[25 x] ⩵ -−625 c2 ⅇ-−π2 t Cos[25 x]

Solve-−ⅇ-−π2 t π2 Cos[25 x] ⩵ -−625 c2 ⅇ-−π2 t Cos[25 x], {c}

c → -−
π

25
, c →

π

25


One value of c agrees with the text answer. Mathematica adds the negative value, perhaps 
overlooked by the text.
subeq = u[x, t] /∕. {c → π/∕ 25}

ⅇ-−π2 t Cos[25 x]
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Plot3D[subeq, {x, 0, Pi}, {t, 0, Pi}]

10 - 13 Laplace Equation (3)

10. u=ⅇx cos y, ⅇx sin y

Clear["Global`*⋆"]

ucos[x_, y_] = ⅇx Cos[y]

ⅇx Cos[y]

d1 = D[ucos[x, y], {x, 2}]

ⅇx Cos[y]

d2 = D[ucos[x, y], {y, 2}]

-−ⅇx Cos[y]

eqc = d1 + d2 (*⋆ 2D Laplace equation *⋆)

0

usin[x_, y_] = ⅇx Sin[y]

ⅇx Sin[y]

d3 = D[usin[x, y], {x, 2}]

ⅇx Sin[y]

d4 = D[usin[x, y], {y, 2}]

-−ⅇx Sin[y]

eqs = d3 + d4 (*⋆ 2D Laplace equation *⋆)

0
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Plot3D[{ucos[x, y], usin[x, y]}, {x, 0, Pi}, {y, 0, Pi}]

I wasn’t supposed to work this even-numbered problem, but in view of difficulties encoun-
tered in the next one, I’ll leave this one in for now.

11. u=arctan(y/x)

Clear["Global`*⋆"]

u[x_, y_] = ArcTan[y /∕ x]

ArcTan
y

x


d1 = D[u[x, y], {x, 2}]

-−
2 y3

x5 1 + y2

x2

2
+

2 y

x3 1 + y2

x2


d2 = D[u[x, y], {y, 2}]

-−
2 y

x3 1 + y2

x2

2

eq2 = d1 + d2 ⩵ 0 (*⋆ 2D Laplace equation *⋆)

-−
2 y

x3 1 + y2

x2

2
-−

2 y3

x5 1 + y2

x2

2
+

2 y

x3 1 + y2

x2


⩵ 0

An answer to this problem is omitted in the text. I can try to plot it (the Laplace surface).
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Plot3D-−
2 y

x3 1 + y2

x2

2
-−

2 y3

x5 1 + y2

x2

2
+

2 y

x3 1 + y2

x2

, {x, 0, Pi}, {y, 0, Pi}

The one that was supposed to be plotted is the solution, i.e. the given function:
Plot3D[ArcTan[y /∕ x], {x, -−1, 1}, {y, -−1, 1}]

13. u=x/(x2 + y2, y  x2 + y2

Clear["Global`*⋆"]

ux[x_, y_] = x  x2 + y2
x

x2 + y2

d1 = D[ux[x, y], {x, 2}]

-−
4 x

x2 + y22
+ x

8 x2

x2 + y23
-−

2

x2 + y22

d2 = D[ux[x, y], {y, 2}]

x
8 y2

x2 + y23
-−

2

x2 + y22

eq2 = d1 + d2 ⩵ 0 (*⋆ 2D Laplace equation, the sum = 0 *⋆)

-−
4 x

x2 + y22
+ x

8 x2

x2 + y23
-−

2

x2 + y22
+ x

8 y2

x2 + y23
-−

2

x2 + y22
⩵ 0
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uy[x_, y_] = y  x2 + y2
y

x2 + y2

d3 = D[uy[x, y], {x, 2}]

y
8 x2

x2 + y23
-−

2

x2 + y22

d4 = D[uy[x, y], {y, 2}]

-−
4 y

x2 + y22
+ y

8 y2

x2 + y23
-−

2

x2 + y22

eq3 = d3 + d4 ⩵ 0 (*⋆ 2D Laplace equation, the sum = 0 *⋆)

-−
4 y

x2 + y22
+ y

8 x2

x2 + y23
-−

2

x2 + y22
+ y

8 y2

x2 + y23
-−

2

x2 + y22
⩵ 0

To have a look at the surfaces that makes the Laplace equation true:

plot1 = Plot3D

-−
4 x

x2 + y22
+ x

8 x2

x2 + y23
-−

2

x2 + y22
+ x

8 y2

x2 + y23
-−

2

x2 + y22
⩵ 0,

{x, -−1, 1}, {y, -−1, 1};

plot2 = Plot3D

-−
4 y

x2 + y22
+ y

8 x2

x2 + y23
-−

2

x2 + y22
+ y

8 y2

x2 + y23
-−

2

x2 + y22
⩵ 0,

{x, -−1, 1}, {y, -−1, 1};

Show[plot1] Show[plot2]

plot3 = Plot3D
x

x2 + y2
, {x, -−1, 1}, {y, -−1, 1};

plot4 = Plot3D
y

x2 + y2
, {x, -−1, 1}, {y, -−1, 1};

12.1 Basic Concepts of PDEs 540.nb     7



Show[plot3] Show[plot4]

And at the given functions:

No answer to this problem appears in the text’s answer appendix.

15. Boundary value problem

Verify that the function u(x,y)= a log(x2 + y2 + b satisfies Laplace’s equation (3) and 
determine a and b so that u satisfies the boundary conditions u=110 on the circle 
x2 + y2=100.

Clear["Global`*⋆"]

This one is worked in the s.m.

u[x_, y_] = a Logx2 + y2 + b

b + a Logx2 + y2

d1 = D[u[x, y], {x, 2}]

a -−
4 x2

x2 + y22
+

2

x2 + y2

d2 = D[u[x, y], {y, 2}]

a -−
4 y2

x2 + y22
+

2

x2 + y2

FullSimplify[d1 + d2]

0

The Laplace equation equality is verified. The function u is a solution. Now for the bound-
ary values.
Solve[a Log[100] + b ⩵ 110, {b}]

{{b → 110 -− a Log[100]}}
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Solve[a Log[100] + b ⩵ 110, {a}]

a →
110 -− b

Log[100]


I was not overly pleased with the way the discovery of the constants a and b needed to be 
done. I could not find a way to do it in one step.

16 - 23 PDEs Solvable as ODEs
This happens if a PDE involves derivatives with respect to one variable only (or can be 
transformed to such a form), so that the other variable(s) can be treated as parameter(s). 
Solve for u = u(x,y):

17. uxx + 16 π2 u = 0

Clear["Global`*⋆"]

eqn = D[u[x, y], {x, 2}] + 16 π2 u[x, y] ⩵ 0

16 π2 u[x, y] + u(2,0)[x, y] ⩵ 0

sol = DSolve[eqn, u[x, y], {x, y}]

{{u[x, y] → Cos[4 π x] C[1][y] + Sin[4 π x] C[2][y]}}

Even though the independent variable y does not make an active appearance, its presence 
must be directly acknowledged in order to get its representation shown in the solution. The 
answer matches the text’s.

19. uy + y2 u = 0

Clear["Global`*⋆"]

eqn = D[u[x, y], {y}] + y2 u[x, y] ⩵ 0

y2 u[x, y] + u(0,1)[x, y] ⩵ 0

sol = DSolve[eqn, u[x, y], {x, y}]

u[x, y] → ⅇ-− y3

3 C[1][x]

The above answer matches the text’s.

21. uyy + 6 uy + 13 u = 4 ⅇ3 y

Clear["Global`*⋆"]

eqn = D[u[x, y], {y, 2}] + 6 D[u[x, y], {y}] + 13 u[x, y] -− 4 ⅇ3 y ⩵ 0

-−4 ⅇ3 y + 13 u[x, y] + 6 u(0,1)[x, y] + u(0,2)[x, y] ⩵ 0
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sol = Simplify[DSolve[eqn, u[x, y], {x, y}]]

u[x, y] →
1

10
ⅇ-−3 y ⅇ6 y + 10 Sin[2 y] C[1][x] + 10 Cos[2 y] C[2][x]

The above answer matches the text’s.

23. x2 uxx + 2 x ux -− 2 u = 0

Clear["Global`*⋆"]

eqn = x2 D[u[x, y], {x, 2}] + 2 x D[u[x, y], {x}] -− 2 u[x, y] ⩵ 0

-−2 u[x, y] + 2 x u(1,0)[x, y] + x2 u(2,0)[x, y] ⩵ 0

sol = Simplify[DSolve[eqn, u[x, y], {x, y}]]

u[x, y] → x C[1][y] +
C[2][y]

x2


The above answer matches the text’s.

25. System of PDEs

Solve uxx = 0, uyy = 0

Clear["Global`*⋆"]

eqn1 = D[u[x, y], {x, 2}] ⩵ 0

u(2,0)[x, y] ⩵ 0

eqn2 = D[u[x, y], {y, 2}] ⩵ 0

u(0,2)[x, y] ⩵ 0

DSolveu(2,0)[x, y] ⩵ 0, u(0,2)[x, y] ⩵ 0, u[x, y], {x, y}

DSolveu(2,0)[x, y] ⩵ 0, u(0,2)[x, y] ⩵ 0, u[x, y], {x, y}

After trying several variations in formatting, I find that Mathematica 10 will not do this 
differential equation system. I find that Mathematica 11 won’t do it either, and neither will 
WolframAlpha.
h1 = DSolve[eqn1, u[x, y], {x, y}]

{{u[x, y] → C[1][y] + x C[2][y]}}

h2 = DSolve[eqn2, u[x, y], {x, y}]

{{u[x, y] → C[1][x] + y C[2][x]}}

tot = C[1][y] + x C[2][y] + C[3][x] + y C[4][x]

The simplicity of the system allows it to be done by hand, by adding the partial solutions. In 
the above yellow cell the C[2] and C[4] terms need to be combined, and there is no iso-
lated arbitrary constant. With these modifications, it would match the text answer.
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